当前位置: 主页 > 科技 >

数字电源比模拟电源更有优势:它有六板斧!

时间:2019-03-15 14:21    来源:壹零壹贰    作者:小猪    挑错/举报
模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,

模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。

数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。

模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。综合考虑两者优势,Maxim公司的Ashrafzadeh 认为,最佳方案是将模拟PWM与数字电路相结合,在不牺牲模拟控制所具备的精度和无限分辨率的情况下,提供数字控制所具有的全部性能。

数字电源VS模拟电源的优势对比

数字开关电源正是为了克服现代电源的复杂性而提出的,它实现了数字和模拟技术的融合,提供了很强的适应性与灵活性,具备直接监视、处理并适应系 统条件的能力,能够满足几乎任何电源要求。数字电源还可通过远程诊断以确保持续的系统可靠性,实现故障管理、过电压(流)保护、自动冗余等功能。由于数字 电源的集成度很高,系统的复杂性并不随功能的增加而增加过多,外围器件很少(数字电源的快速响应能力还可以降低对输出滤波电容的要求),减少了占板面积,简化了设计制造流程。同时,数字电源的自动诊断、调节的能力使调试和维护工作变得轻松。而数字电源相对于模拟电源的优势主要体现在以下几个方面:

(1)便于高度集成化,由于数字电路采用二进制,其代码符号仪有0和l两种,因此在数字1电路中只要有个不同的状态分别表示0和1就可以,所以数字电路的基本单元十分简单,而且对元件要求也不严格,允许电路参数有较大的离散性,有利于将众多的基本单元集成在同一硅片上进行批量生产。

(2)工作准确可靠,抗干扰能力强。数字信号是l和0来表示信号的,而数字电路辨别信号的有无是很容易做到的,从而大大提高了电路的工作可靠性。同时数字信号不易受到噪声干扰,因此它的抗干扰能力极强。

(3)数字信息便于长期保存。借助某种媒体(磁盘、光盘等)可将数字信息长期保存下来。

(4)数字集成电路产品多、通用性强且成本低。

(5)保密性好,数字信息容易进行加密处理,不易被窃取。

(6)不尽能完成数值运算,还可以进行逻辑运算和判断,这在控制系统中是不可缺少的。

数字电源管理芯片易于在多相以及同步信号下进行多相式并联应用,可扩展性与重复性优秀,轻松实现负载均流,减少EMI,并简化滤波电路设 计。数字控制的灵活性能把电源组合成串联或并联模型,形成虚拟电源。而且,数字电源的智能化可保证在各种输入电压和负载点上都具有最优的功率转换效率。

相对模拟控制技术,数字技术的独特优势还包括在线可编程能力、更先进的控制算法、更好的效率优化、更高的操作精确度和可靠性、优秀的系统管 理和互联功能。数字电源不存在模拟电源中常见的误差、老化(包括模拟器件的精度)、温度影响、漂移、补偿等问题,无须调谐、可靠性好,可以获得一致、稳定 的控制参数。数字电源的运算特性使它更易于实现非线性控制(可改善电源的瞬态响应能力)和多环路控制等高级控制算法;更新固件即可实现新的拓扑结构和控制算法,更改电源参数也无须变更板卡上的元器件。

数字控制还能让硬件平台重复使用,通过设计不同固件即可满足各种最终系统的独特要求,从而加快产品上市,减少开发成本、元器件库存与风险。

数字电源取代模拟电源的决定因素

数字控制能解决问题,是因为它具有比模拟控制更好的性能、更灵活且在复杂的设计中更易用。然而下面总结的六个方面是决定了模拟电源被数字电源取代的主要因素。

(1)瞬态响应:控制机制极大影响了系统的瞬态响应。例如,与电流模式相比,磁滞控制器的瞬态响应会有很大不同。每种控制模式都既有优点,也有缺点。数字解决方案让你能无缝地从一种模式转换到另一种模式,以提供最优的瞬态响应。虽然模拟解决方案可以提供很好的点方案,但极少出现足够静态的工作状况,让你能实现所设想的点方案。

(2)调节精度:一般来说,调节精度是根据线电压、负载和温度来定义的,因为这些条件中的每一个都会影响调节精度。数字控制器可以监视这些条件,并采取控制措施,在整个工作条件范围内进行优化。

(3)稳定性:数字控制能够提供比模拟方案更好的补偿(更好地调用极点和零点),因此在稳定性上的控制要好很多。另外,补偿能够随着条件的变化而变化,使系统能在很宽范围的条件下实现最佳的稳定性。模拟控制器的补偿是固定的,而数字控制可提供可调的甚至是自适应的补偿。

(4)故障响应:数字电源控制器提供了大量故障响应的选项。每种故障都有唯一的响应特性,可根据用户的需求进行调整。模拟控制器一般只有一个固定的故障响应(如断电/断续/过载),用户也只能选择用或者不用。数字控制还能提供滤波器功能,降低虚假故障的可能。

(5)效率:许多控制结果都会影响到效率,包括死区时间、开关频率、栅极驱动等级、二极管仿真、加相和缺相等。针对这些因素,当前数字控制所提供的数字控制算法在整个工作条件范围内进行了优化。因此,在某个工作点下,你也许能将模拟控制器调整到很高的效率,但数字控制器却可对所有的工作点进行优化。

(6)可靠性:减少元件数量、降低工作温度(通过效率优化)是数字电源提高系统可靠性的两个途径。此外,灵活的故障响应和探测元器件参数微小变化的能力,可以大幅减少停机时间。

一般情况下,对大多数简单的设计和基本要求来说,数字控制可能有点大材小用。当然,数字电源控制的灵活程度足以应付这些简单的应用,其功能可能超出实际所需。因此,数字控制器显然是备受欢迎的解决办法。

另外,数字电源控制一般比模拟控制器具有更高的集成度。然而,集成度还不足以满足设计重用和灵活性的要求;但是,数字电源控制器适用于各种各样的应用,无需借助附加电路。从这个意义上说,这项技术的灵活性要远优于传统的模拟技术。

 

模拟电源有多好?数字电源更有优势,它有六板斧!

 

 

 

模拟电源有多好?数字电源更有优势,它有六板斧!

 

 

我一直不喜欢那些盲目崇拜老外的人,但有时还不得不对行业内的老外,佩服得五体投地。他们也会出错,写出一些乱七八糟的文章害人,但是确实有好多设计,实在精妙,让人拍案叫绝。

前些日子看CAN总线,那么多设备挂接在单信息总线上,都想说话,还没有领导,那不成一锅粥了吗?看懂就发现,原来它们给每个接入设备分配了ID号——有大小区分的身份证,靠二进制的01级别展开无限制的竞争,一下就实现了多个设备无领导情况下的单总线竞争占用。看完后,我的感觉是美妙。这些洋鬼子,看来是聪明的,至少不比我笨。

再看放大器。要检测一个负载的用电电流,有一种方法是在回路中串联一个检测电阻,只要获得电阻两端的压差,就可以计算出流过的电流,这谁都清楚。但是串联电阻串在哪里?是高侧,就是负载的头顶,还是低侧,就是负载的脚底下?于是,我知道原来有两种检测方法,分别是High side,Low side。两种方法各有优缺点:低侧检测的最大好处是串联电阻两端几乎没有共模电压,比如一端是0V,另一端是0.1V,压差是0.1V,这可以直接使用仪表放大器检出,方便得很。但是它也有缺点,就是负载的脚底不再是0V,而是0.1V了,如果电流在波动,这个0.1也就不稳,就像站在一楼,但地板晃荡一般,结果是负载很不舒服。你是个检测仪表,要检测负载中的电流,但搞得负载很不舒服,就像医生搞得病人很不舒服一般,这有点不妙。

模拟电源有多好?数字电源更有优势,它有六板斧!

 

于是大量的设计,都采用高侧检测。但高侧检测也有麻烦,比如负载工作电压为100V,正常工作时,负载的脚底是0V,头顶是100V,现在你串联了一个小电阻在负载头顶,上面有0.1V的压差,这就使得电阻高端是100V,电阻下端是99.9V(也就是负载的头顶电位)。从效果看,负载其实是很舒服的,它脚底下很稳,0V,没错,它头顶有点飘,差不多在99.9V附近,我们知道一般的负载对头顶的电压波动不太敏感,因此它很舒服。

但负载舒服了,测量仪表就不舒服了。测量放大电路必须把两根线上的压差检测出来,它们分别是100V和99.9V,共模就有99.95V,这么大的共模电压,加载到任何一个仪表放大器上,都会立即烧毁放大器。

怎么办呢?

老外就设计了一款差动放大器,比如ADI的AD628,电路如下图。它用两套分压电阻,将100V分压到10V以内,实际加载到内部运放管脚的电压只有10V左右了,安全了,但是我们发现,要检测的差压0.1V也被衰减了10倍,变为0.01V了,于是他们又在这个减法器的输出端,增加了一级10倍放大,即保护了内部的运放不被烧毁,又保证压差0.1V没有被衰减,且输出就是我们需要检测的0.1V。

妙吧。其实一点儿都不妙,妙的在后面。

我们都知道先把一个东西缩小,然后再放大,总是让人心里不踏实,有没有一个电路能够实现:第一,抵抗高的共模输入,第二,对差模量不衰减。

这时候我开始佩服老外了,他们设计了一款AD629,就是AD628它弟弟,就满足了这个要求,电路结构如图。号称能够抵抗高达270V左右的共模电压,且实现了一比一的差压检出。他们怎么想出来的?看来他们的牛肉是没有白吃的。

德州仪器的INA117与AD629结构一致,里面的电阻也差不多。